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ABSTRACT

Two kinds of existence of multiple periodic solutions for an asymp-

totically linear wave equation are studied. The first concerns the

existence of at least three distinct solutions without any group symmetry

assumptions on the nonlinear term. The second deals with an estimation

of the number of solutions based on the asymptotic behaviour of the non-

linear term at zero and at infinity under an oddness assumption.-_
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SIGNIFICANCE AND EXPLANATION

Periodic solutions for nonlinear wave equation are studied by many

authors in recent years. Most results concern the existence of a non-

trivial solution. In this paper, we present two methods to look for more

solutions.
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MLTIPLJ PERZOOIC SOLUTIONS FOR AM
ASYMPTOTICALLY LINEAR WAVE EQUATION

K. C. Chang*, S. P. Wu** and Shujie Li***

In this paper, we study the existence of multiple periodic solutions of the following

asymptotically linear wave equation:

u - u + g(t,x,u) - 0 (t,x) m : - (0,2w) x (0,w)tt XX

u(0,t) - u(Nt) - 0 t c [0,2w] (1)

u(x,0) - u(x,2w)

where g e C (Q x R1 ,R1), with further additional assumptions.

Two kinds of results are concerned,

(1) The existence of at least three distinct solutions of the equation (0.1). The

proof does not depend n any kind of symmetry assumptions on g.

(2) An estimation of the number of solutions of (0o1), based on the asymptotic

behaviour of g at u - 0 and at u -. , under an oddness assumption on g.

In case (1), a topological lema is needed which is due to A. Castro. A. C. Laser [41

and K. C. Chang [5), and which reads as follows.

Lemm. Suppose that f is a C2  real valued function defined on en . Assume that

f is bounded below, satisfies the Palais-Omale conditiont and that S is a nondegenerate,

non-minm= critical point of f; then there exist at least three distinct critical points

of f.

For simplicity, v express our result in case where g depends on u only. A

typical result in the
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Theorem 1. Suppose that g e C' (a, satisfies the following oonditJ Pnss

(g>) B0 such that

0 < g'(u) < 0, g(O) - 0. g(C*) - *", 1

(92) g(u)/u <Y < 3 as Jul large enough 1

(g3 ) g(u)/u > p > 3 as lul small enough I

(g4 ) g'(O) 4 a(-D) - (k 2 _ 2(k,j) e Z x N')

where S is the integer ring, U' denotes the positive integer group; and y,p are

constants.

Then the equation (0.1) has at least three distinct solutions.

In case (2), let f a {xlf(x) 4 a) and y(.) be the genus of a set. Then according~a

to Clark [6], the two numbers (if they exist),

im(f) - lin y(fa)
a+-O

12 (f) - li- y(fa

a+-,*a

determine lower bounds for the number of critical poato of a functional f, which is

even, C1, satisfies the P.S. condition and f(O) - C. Namely, Clark proved that there

are at least (i(f) - i2 (f)) pairs of distinct critical points of f with critical

values
c - inf Sup f(x) for i 2 (f) < n C i 1 (1)y(A))n xcA

A typical result in this case is the

Theorem 4. Suppose that g e C1 (2, ), odd, satisfies the conditions

(gl1 ) g(u) is strictly increasing with g(0) - 0

(g 2 l) a a such that the limit a - lE 2LU 0 0 exists and lies in the interval

(Amok 0+ ), where 0 < A1 A 2 4 C A3 ... are the positive signevalues of -E.

(g3 1) a k such that Xk < g'(0) < k+l

Then the equation (0.1) has at least 21k - al solutions provided

(Akk,+l) n ()s,MO) - * and A0 -0.

The paper is divided into three parts. 11 deals with the case (1), where a

combination of the saddle point reduction (eg. of. (1)), and a "dualityu argument due to
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Ukeland E7] and gresinCoron, Nirenberg [31# is used. §2 prements applicetioma of the

Clark criterial to the equation (0.1), our problem again being reduced to finite

diamnsional one" by the above reduction. 33 consists of remarks, in which we give the

generalized formulation of the theorem proved In 11 and 32. Our method can also bes used

to attack Hamiltonan smystems.

We express our grateful thanks to Professor R. Bresis, who suggests the problem in

cae (1). We also wish to thank Prof. L. Mirenberg and P. Rabinowits for their

afoouragment and help.

$1. The proof of Theorem 1.

The proof of Theorem I is divided into the following four stepea
-1 llt 1,

1 Let h g then h CCE), and satiafies.

(1') < h'(t) <, h(0) - 0 5

(2') h(t) > > . for Itl large enough j
t 3

(31) h (t) < - for Itl smIl enough j
t p3

4') h'(0) 4 2  2 2 )  k, (i - k) c N- x Z}
kJ

i 2 a2

20 Let 0 be the linear differential operatorsa 2 - a- with domains
8t2 ax2'

D(O) - (u C C2 (Q)I 2w periodic in t, Vx c o,v] and

u(0,t) - u(i,t) - 0 V t e C0,2w]), and let A be the aelf adjoint extension of 0 on

the Hilbert space L2 (Q). We denote the range of A by R(A), and the null apace of A

by N(A). Let K be the inverse of A, defined an R(A) - N(A)

Let t

3(t) - h(s)ds
0

then there exists a constant C much that

5(t) > Ijt 2 
- CIt ta a' (2)

and

* -3-



iI

1(t) C- t2  as Itl small enough. (3)

Problem (1) i. em rduced to find the critical pints of the functional

f(V) KvOV + f H(v) (4)

on the Hilbert subspace ROA), or equivalently, to find the solution of the operator

equations

Kv + Ph(v) - 0 (5)

where P is the orthogonal projection onto the subspace R(A), and h( ) is the Nemytaki

operator v . h(v(x)), from L2(Q) into itself.

Zn fact, if ve is a critical point of (4), or a solution of (5), letting

u*- (I - F)h(v*) - K ,

we find

u* - h(v) ,

and

Aue +. V - 0 1

i.e.

Ane + g(u*) - 0

Sinc the operator h( ) is invertible, different v*'s correspond to different

ues's

30 The nonlinear operator Ph( ) is a potential operator on R(A), vith potential

HM), satisfying:

" I IV v2 12 e (Phlvl) Phlv 2 ), V, - v2)

The bounded self-adjoint operator K on R(A) has only finitely many sigenvalues in the

interval (d, - and each is of finite multiplicity.

suppose that .Ais the spectrum resolution of K, and let

P+ " d1A, P- d31

wbere with no les of generality we may assume that - - is not in the spectrum of K.

2e eqution (S) no is equivalent to the systems
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Pe . v + eft(v) - 0 (6)

P:'Xv + P"Ph(v) - 0 (7)

Lot v - (v I + v2), where v,- P 1+v, v2 - p'v. It is not difficult to see that for

fixed v2, P+K + R+Ph(v 2 + -) is a strongly monotone operator on the Hilbert subspace

P R()o Then there is a continuous function v I - vl(v 2 ) with v (e) - 0, which is the

unique solution of the equation (6) for fixed v2 9 P R(A). Now the equation (5) is

equivalent to the equation

Xv2 + P7Ph(v, Ni ) + v2 ) - 0 )

8ince the subepae P R(A) in of finite dimension, there exists a linear

h -~mrphlim T t R" - IrR(A), ' z,..,jz ) * v2 - Tz - zi# , where {l.. N

WWz - v 1 0 TZ

and

v(s) - w(z) + Tz

Define a function on AN

1~z f [XV(z)ov(x) + 2H(v(z)]dxdt (9)

We shall prove in the next step that

( ) VWz C(RC(i))
(1X) VW E CI(Rt,R(A)) with

V'(z) - -1P+ + P +Ph'(v(z))] 'P+Ph'(v(z))T + T

(xxx) h~v(z)) c C1(RN,R(A))

(XV) a c2cn ) with

d z a - T*[IXf + P-Ph(v(s))]

2 a - T!T + T*P'Ph'(v(x))v'(z)

Thus, equation (8) is exactly the Ruler equation of the function a, i.e. we again

redue the solvability of the equation (5) into a problem of finding -:ritical points of the

function a.
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On one hand, according to the definition of a and the inequality (2), we find

a(z) ) 1_ Iv()12 - Clvlz)l - - Iv(z)I + -_
2y 6

as Na t . The function in bounded below.

On the other hand 8 is a critical point of a (see (I1)), which is

nondegenerate. in fact (cf. (II))

v'(O) - -(P+K + P+Ph-(0))- P+Ph-(O)T + T

so that

a(O) - T(K + P-Ph'(0))T (14)'

provided by the comutability of the projection operator P+ and the operator

(P+K + P+Ph'(0)) "  According to the assumption (4) (cf. (4')), d a(O) is invertible.

Finally, we prove that 8 is not a minimum. In fact, choosing z such that

Tz - t# 1 , where #1 is an eigenvector corresponding to the sigenvalue -3 of A, and

normalized, so that we have

a(sO)(h' - ) t2 + O(t 2 ) < 0

for Itl > 0 small enough.

Now our conclusion follows from the lemma.

V Prove

(I) v(z) a C(R ,C(Q))

From the equation (6). and the definition of v(z), we have

POKv(z) + P +Ph(v(z)) - 0

u(W) - (I - P+P)h(v(z)) - P+'Kv()

Then

u(z) - h(v(z)) (10)

and Au(s) - A(P - P+ P)h(v(z)) - P v(s)

- (AV )Ph(v()) - +v(Z)



It is known that v(z) c C(RR(A)), that h maps L2(Q) into itself continuously,

and that AP 9 £ (R(A),R(A)). Combining with the well known property of the wave operator

[ell
./-

A71 C LCRIA),C QI))

we conclude

u,(z) - A-( (CAP-)Phlvlz)) - P vwzl] CI RCIQ))

according to (10), we find v(z) - g(u(z)) C C(R1,C()).

(11) v(z) C C (R,R(A))

Notice that the nonlinear operator v + h(v) has a Gateaux derivative h'(v), which

is a multiplication operator on L2(Q). Since hO(t) ) 1, the linear operator

P+K + P+Ph'(v) is positive definite on the eubspace P+R(A)i the inverse

(P K + P+ph'lv) " 1 
is well defined and bounded on P+R(A) for each fixed v cL2(Q).

For every h z R, let

Ahw(a) - w(z + h) - w(z), AhV(z) - (z) + Th

We have

*AhW(z) + [P+K + P Ph(v(z))]1P+Ph'(v(z))Th (11)
4 CI[P+K + P+Ph'(vlz))]hhW(z) + P+Ph'(v(zf)Thi

* 1

- C
u f P+P[hlCvlz) + th Wz) + tTh) - h'lvlz)llAhWlz) + Th)dtl

0

1

CC I f h'Cvlz) + tA hvz)) - h lvlz))]dti (Uh + I+hwlz))
0 2

t ( Q ())

due to the fact that

f I [P+K + P+Ph'lvlz) + tAhvlz))]AhvCz)dt
0

- P+Kv(z + h) + P+Phlvlz + h)) - P+Kvlz) - P+Phlvz)) - 0.

Since h c C CR1 ) and v(s) C C(?,C(Q)), for every C > 0, there exists 6 > 0, such

that
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Sup Ih'(v~z) + tAhv(z) -h'(v~z))I < /C1  for Ihi 6 (12)

Combining (11) with (12), we have

IAhw(z)I - OC0hI)

and thus+ +

IAhw(z) + (P p + + P +Ph'(v(x))] -1P +Ph'Cv(z))Thi -.o~ihl)

This proves w e C IR (,P RCA)) with

W()- -[P IC + P Ph'C(Z))] lP Ph'(v(z))T

I NTherefore V(Z) E C (3 ,R(A)) and

v' (z) - w1Cz + T

I N(III) h(v(z)) 9 C (R ,R(A))

In fact,

Ih(v(z + h)) - h(v(z)) - h'(v(z))v'(z)h1

( Sup Ih'(v(z) + tA hv(z)) - h'(v(z))I 1 IA hVWA)

+ 1h*(v(z))I Q 2 (Q) .hv(z) - v'Cz)hI

Using the inequality (12) again, we get the conclusion, with

d zh(v(a)) - h'(v(z))*vl(z)

(IV) a eC (it) with

d za(z) - T([KT z+ P Ph(v(z))] [13)

and

d2 a~z) - TeICT + T-PPh-(v(z))v'(z) *(14)z

We compute directly,

(d za,q) - (IKv(z) + Ph(,.-(z)),(v'(z),q)) V qe R (15)

where <,> denotes the duality in RN, and Cdenotes the duality in L2CQ).

However,



(v'(z),q) + (P w(z),q)+ P-Tq

Kw(z) + P+Ph(v(z)) - 0

Thus

KRZz) Ph(v(z)) - P-(KTz + Ph(v(z)))

Substituting into (15), we obtain

(dza,q) - (T*[KTz + P Ph(v(z))I,q) v q C RN

i.e. (13) holds. Differentiating again, we obtain

2d2a - T*VI + TPPh(v(z))v'(z)

£2. The case g(u) is odd.

Let X be a Banach space. Let f : X + RI be a C', even function satisfying the

Palais-Smale conditionj and let f(O) - 0. We have mentioned the two numbers

i (f) - lim y(fa )
a+0-

i 2(f) - liz "f(fa)

a2 -

play an important role in estimating the number of critical points of f. Moreover it is

easily seen that

(1) If there exists a subspace Y C X with codim Y- and fl > b > then

i2(f) ( j°
12 J

(2) If there exists A C E, the family of all symmetric subsets with respect to the

origin in X\(6}, such that y(A) ; m and Sup f(x) < 01 then i 1 (±) ) m.
xCA

In fact, in case (1), let a < b, then f a Y This implies Pf aC Y1 \, where P

is the orthogonal projection onto Y1 . There y(f a) 4 y(Pf a ) - J. This proves

i 2(f) 4 J.

In case (2) there exists a < 0 such that A C fa. We have y(f ) y(A) ) m which

implies i1 (f) ) m.

For a C2 function f defined on R" it(f) i2 (f) are easily estimated by the

asymptotic behaviour of f at 8 and at 0. Let ind (A) denote the maximal dimension

of the negative eigenspace, of a symetric matrix A.

-9-
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Lemma 1. Suppose that f 6 C
2 (K,R

)
, is even, f(O) - 0, and that f(x) * +* as

Ix1 + "; then f astisfies the P.S. condition with

iI(f) P ind (A0 )

where A. f"(O), and 8

.2 (f) - 0

(Trivial).

Lemma 2. Suppose that f s C2(itnR) is asymptotically quadratic, with an invertible
1

A such that - (Aix,x) is its asymptotics i.e. lfl(x) - Axl - o(lxl) as lxl *

If further, f is even, with f(O) = 0. (Without loss of generality, we may assume that

ind (A0 ) 4 ind (A,), for otherwise, we consider -f instead of f). Then f satisfies

the P.S. condition, with

i I(f) > ind (A0 )

and

i 2M) < ied (A)

The conclusion follows directly from the above two properties: (1) and (2), if the

P.S. condition is verified for f.

Suppose that {x } C Rn is a sequence such that (f(xn) is bounded and that)
ni

f' +x) e. We shall prove that there exists a convergent subsequence.

Since f is asymptotically quadratic, i.e.

If'(x) - Axl - OIxI) as 1x1 +

and A. is invertible, for each 6 > 0, there exists a constant R such that

lf'(x)l ) IA' I Ixl - 6lx1 as lxI > R

1 -11-1 '
Letting 6 I A I we have

f'(x)l > 61x > 8R as Ixi > R

Thus, if f' (x n ) + 8, (Xn  must be bounded. Therefore a convergent subsequence exists.

Now we return to the equation (0.1). Let

3 1 2 3

-10-



a2  a2

be the positive eigenvalues of the seilf-adjoint operator -D - (I- - in L2 (Q) (the
ax at

multiplicity of the eigenvalue in counted) and let 10 a 0.

Theorem 2. Suppose that g c C (t ) is odd, and satisfies the conditions

(gl),(g 2 ) and

(g) g( o )

Then the equation (0.1) has at least k pairs of solutions.

Proof. All the assumptions in Theorem I are fulfilled. According to the proof in 11,

the problem is reduced to finite dimensional a s R R1 , which is C2 , even and

satisfies:

a(z) + +m as IZI 4 ,

with a(6) - 0. We look for the critical points of a.

Now the conclusion follows from the Lema 1, if we know

ind (a()) - k

To this end, we see from (14)', that

2d a(O) - TeXT + T*P Ph' (0)T

Thus the maximal dimension of the negative eigenspace of d2 a(6) is exactly k, i.e.

ind (d a()) = k.

Theorem 3. Suppose that q e C (2 1 ) is odd, and satisfies the conditions (gl),(g)

with some positive integer N such that e ( AmexNO1) and u

(g5 ) a constant y such that A < y < and inf f I g(s)ds - I u 2 ) >  "
0 2

Then the equation (0.1) has at least N - K pairs of solutions.

Proof. All the assumptions of Theorem 5, Corollary 1 in (5) are fulfilled. The

procedure, reducing to the finite dimensional case now is only done by the saddle point

reduction. The index of the Hessian of the reduced function at 8 is V4 - K (cf. (2,

prop. 7.3]); and the reduced function goes to infinite at -.

Theorem 4. Suppose that g a C (I ), Is odd, and satisfies the conditions

(g), (g ) and

* -11-
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